Digitalization and reasoning over engineering textual data stored in spreadsheet tables – the case for OTTR

Melinda Hodkiewicz and Johan W. Klüwer

NLP-TLP Group, University of Western Australia, Perth, WA (e-mail: <u>melinda.hodkiewicz@uwa.edu.au</u>) DNV GL, Oslo, Norway (e-mail: <u>Johan.Wilhelm.Kluewer@dnvgl.com</u>)

Motivation

ISO14224_FailureModeCode	ISO14224_FailureMode	ISO14224_FailureMode_Description	WOType	▼ BscStartDa	ACtStartD	ShortText
AIR	Abnormal instrument reading	False alarm, faulty instrument indication	PM01	10/07/2005	10/07/2005	replace lube tank fill hose.
BRD	Breakdown	Serious damage (Seizure, breakage)	111101	10/07/2000	10,07,2000	
DOP	Delayed operation	Delayed response to commands	PM01	10/07/2005	10/07/2005	checked rotary head alignment
ELF	External leakage - fuel	External leakage of supplied fuel / gas	PM01	10/07/2005	10/07/2005	reweld shock sub to rotary head
ELP	External leakage - process medium	Oil, gas condensate, water	PM01	27/07/2005	28/07/2005	centre tank not filling with water
ELU	External leakage - utility medium	Lubricant, cooling water	111101	2170172000	20,07,2000	
ERO	Erratic output	Oscillating, hunting, instability	PM01	2/07/2001	2/07/2001	hydraulic pump failure
FCO	Failure to connect	Failure to connect	PM01	1/07/2001	2/07/2001	pump drive box coupling and shaft u/s.

Subsystem & Function	Component	Sub-Component	Potential Failure Mode	Potential Effects of Failure	Severity	Potential Cause(s) of Failure	Occurr	Current Controls	Detectio	RPN	Recommended Action
Power Train	Upbox	Housing	Wearing	Damage to upbox components	4	Physical Impact, incorrect installation	2	Visual inspection	2	16	Inspect for optimal replacement interval of component.
		Gears	Wearing	Damage to gear teeth or bearings	3	Physical Impact, incorrect installation	3	Oil sample wear test	4	36	Training for correct installation, investigate methods to better utilise oil samples
		Coupling	Wearing	Possible excess vibrations or complete failure of joint	3	Physical Impact, incorrect installation	3	Visual inspection	3	27	Inspect for optimal replacement interval of component.
		Lubrication	Incorrect Lubrication	Increased wear of heating of components	2	Servicing error	2	Oil Sample Wear Test regular oil change and oil storage management	4	16	
			Degradation of Lubrication	Increased wear of heating of components	1	Blocking of breather cap, poor storage or mixing of oils	2	Oil Sample Wear Test	4	8	
		Sensors	Wearing	Loss of function of sensor	3	Physical Impact, incorrect installation	3	Investigated upon component failure	3	27	

A vast amount of engineering text data is stored in SPREADSHEET TABLES

The data is not machine-interpretable

		•

Subsystem & Function	Component	Sub-Component	Potential F	
Ref.	Component	Function	Failure	

- Tables used by engineers for knowledge capture are schemaless but have implicit structure
- The structure is often related to engineering standards and practices
- Column headings are ad-hoc but relate to standards or widely used relational databases
- Data are semi- or unstructured

ailure Mode	Potential Effects of Failure	
node	Failure effect	

Use case – Equipment hierarchy

Example from IEC60812. (2006). IEC 60812: Analysis Techniques for System Reliability-Procedure for Failure Mode and Effects Analysis (FMEA).

	Heating, ventila- tion & Cooling system	Heater system	Ventilatio & cooling system
Heater system	X		2
Ventilation & cooling system	X		
Heater		X	
Terminal box		X	
Fans & fan hubs			X
Heat exchanger			X
Air filters			X

Use case - FMEA

Ref.	Component	Function	Failure mode	Failure effect
20.1.1	Heaters	To heat up unit	a) overcurrent	Loss of all heating.
·			b) short circuit	
			c) earth fault	Loss of all heating
20.1.2	Terminal box	Connect supply to heaters	a) overcurrent	Loss or reduction of heating
			b) short circuit	Loss of all heating
			c) cable failure	Loss or reduction of heating

- FMEA widely used risk assessment process
- Organisations have hundreds of FMEA

Can we extract the implicit knowledge captured in the FMEA tables to support quality control and re-use?

ment process of FMEA

Our approach

DEVELOP ONTOLOGY MODULES

- Assess data sets and map classes present in the data
- Select an upper ontology to align to
- Decide on ontology modules
- Identify explicit and latent classes needed for knowledge representation and reasoning
- Build and test ontologies
- Ingest data FROM different FMEAs (using OTTR) patterns)

INGEST DATA:

 Represent rows and columns as **Resource Description Framework** triple

	isFunctiona	lPartOf	
	Heating, ventila- tion & Cooling system	Heater system	Ventilation & cooling system
Heater system	X		
Ventilation & cooling system	X		
Heater	\sim	X	
Terminal box		X	
Fans & fan hubs			X
Heat exchanger			X
Air filters			X

F = (heaterSystem; hasFunctionalPart; heater)

FMEA ontology

From: Digitalization and reasoning over maintenance data stored in tables, Melinda Hodkiewicz, Johan W. Klüwer, Caitlin Woods, Thomas Smoker, Wei Liu, Tim French. Maintenance in the Digital Era- 4th IFAC Workshop on Advanced Maintenance Engineering, Services and Technologies, AMEST 2020, 10-11 September 2020, Cambridge University.